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Introduction

Mathematical modeling moved into the mainstream for many teachers,  
curriculum developers, teacher educators, and others in the United States 
largely due to its inclusion as both a high school conceptual category  
and a mathematical practice. Despite the attention, mathematical modeling 
is not yet clearly understood or accurately presented in many mathematics 
classrooms. Ensuring that all involved in mathematics instruction have  
a clear understanding of what mathematical modeling is and where it fits  
in high school mathematics is warranted.

The essence of mathematical modeling is the pursuit of authentic  
questions that originate outside mathematics. To understand mathematical 
modeling means to know it as a process and to distinguish between 
mathematical modeling problems and application problems as well as 
between mathematical modeling and modeling with mathematics.

Mathematical Modeling Defined and Described

Model and modeling are common terms used in different ways in everyday 
language and in mathematics. In mathematics teaching and learning,  
definitions—or at least descriptions—of mathematical modeling abound  
and appear in multiple venues. In terms of standards, “Mathematically 
proficient students can apply the mathematics they know to solve problems 
arising in everyday life, society, and the workplace” (p. 7). Mathematicians 
whose work is mathematical modeling, in particular, the authors of  
Guidelines for Assessment and Instruction in Mathematical Modeling Education 
(GAIMME) (Garfunkel et al., 2016), describe mathematical modeling as “a 
process that uses mathematics to represent, analyze, and make predictions or 
otherwise provide insight into real-world phenomena” (p. 10).

Perhaps because mathematical modeling is commonly referred to as simply 
“modeling,” it is often confused with other forms of “modeling” in the  
STEM fields, such as statistical modeling or engineering design. Peck, Gould, 
and Miller (2013) describe the essence of how mathematical models and 
statistical models differ:

 Bivariate, or two-variable, populations require functions  
 of the form y = f(x) to model the structure, which is the overall  
 trend or relationship between two quantitative variables (p.15).
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Whereas

 Statistical models extend the mathematical   
 model by including a variability component.  
 Statistical measures of variability, such as  
 the standard deviation, give an indication 
 of how much, on average, data values deviate  
 from the structural part of the model (p.17).

Both statistical and mathematical modeling involve  
variables. However, attention to variance in data and ways 
to represent variance as part of a model is a key difference 
between mathematical modeling and statistical work.

Some scholars argue that a mathematical model should be 
defined more broadly as a system of elements that captures 
what matters about a familiar system for the purposes of 
describing, explaining, or predicting the familiar system 
(Doerr & English, 2003). Mathematical modeling so 
defined seems reminiscent of engineering design, which 
now is an essential feature of the curriculum in many 
schools due to its inclusion in Next Generation Science 
Standards (National Science Teachers Association, 2012). 
Engineering design differs from mathematical modeling 
as defined above in that the former represents systems or 
parts of systems. Development and evaluation of a design  
can be based in non-mathematical thinking and reasoning, 
including scientific theory. Interestingly, despite 
differences among work in statistics, engineering work, 
and mathematical modeling work, statistical work can 
be part of what is used in mathematical modeling and 
mathematical modeling can inform engineering design.

Mathematical modeling also must be distinguished from 
modeling with mathematics. As Cirillo,Pelesko, Felton-

Koestler, and Rubel (2016) observe, “modeling mathematics 
refers to using representations of mathematics to 
communicate mathematical concepts or ideas” (p. 4). 
Actions such as using algebra tiles to illustrate completing 
the square or folding paper to create a parabola, or 
using straws and marshmallows to build physical 
representations of a polyhedron are examples of modeling 
with mathematics, and not instances of mathematical 

modeling. Modeling with mathematics begins and ends 
in mathematics; mathematical modeling begins and ends 
in the real world. Problems without a real-world context 
(see Figure 1) and problems in which the context remains 
completely in the background during the entire solution 
process (see Figure 2) are not mathematical modeling 
problems—they serve other purposes in high school 
mathematics. Mere inclusion of a real-world context in 
a problem does not make it a mathematical modeling 
problem—the problem might be an application task. To 
be a modeling task requires the context to be essentially 
inseparable from the mathematics.

Arguably, the vast majority of problems that appear in 
most school mathematics materials are applications 
problems, not mathematical modeling tasks. Henry  
Pollak, renowned mathematician and modeler,  
succinctly distinguished mathematical modeling  
from applications of mathematics, noting that  
mathematical modeling includes: “(1) explicit  
attention at the beginning of the process of getting  
from the problem outside of mathematics to its  
mathematical formulation, and (2) an explicit  
reconciliation between the mathematics and  
the real-world situation at the end” (2003, p. 649).

Mathematical Modeling  
as a Process

Pollak’s allusion to the beginning and the end of the 
work involved, positions mathematical modeling as a 
process, consistent with the aforementioned definitions 
of mathematical modeling. The process is inherently 

The essence of  
mathematical modeling  
is the pursuit of authentic 
questions that originate 
outside mathematics.

FIGURE 2: Real-world context essentially irrelevant

FIGURE 1: NO REAL WORLD CONTEXT
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iterative—but not in the sense of simple recursion.
Mathematical modeling is not a procedure or algorithm. 
There is no fixed or firm set of steps that take one from 
the beginning to the end of a mathematical modeling 
event. The stops, restarts, and do-overs of mathematical 
modeling often come from the need to “reflect on whether 
the results make sense, possibly improving the model  
if it has not served its purpose” (NGA Center & CCSSO, 
2010, p. 7). Revisions can be many, and the process might 
need to be called to a close when a useful, though not 
perfect, model is achieved.

Many diagrams have been offered as ways to capture 
mathematical modeling as an iterative process grounded  
in the real world. They may differ in the number of  
nodes or connections they include or in how these 
elements are labeled, but they are similar in that they 
involve probing a real-world situation, carrying out some 
mathematical work, and validating a model.

Because most of school mathematics has long focused 
almost exclusively on learning and doing the almost purely 
mathematical work, a diagram that articulates aspects of 
mathematical modeling can prompt images of the critical 
role that the real-world contexts play in mathematical 
modeling—and the centrality of the real-world context is 
key to what makes mathematical modeling different from 
applied mathematical work and typical mathematical 
problem solving. Bliss, Fowler, and Galluzzo (2014) provide 
such a diagram (see Figure 3). 

Like most modeling diagrams, it shows that the  
mathematical modeling process begins with a real-world 
problem, ends with reporting results, and provides a definite 
space for analysis and model assessment. Most importantly, 
the diagram highlights the three research and brainstorming 
activities of defining the problem, defining the variables, and 
making assumptions. The arrows emphasize the back-and-
forth movement among these elements. This aspect of the 
diagram directly hits the goal for students to be “comfortable 
making assumptions and approximations to simplify 

a complicated situation, realizing that these may need 
revision later” (NGA Center & CCSSO, 2010, p.7). Getting a 
solution—the mathematical work that does not distinguish 
mathematical modeling from other mathematical work—is a 
very small part of the overall process.

Mathematical Modeling and  
School Mathematics

The process of mathematical modeling is time-consuming 
and messy. When encountering a mathematical modeling 
problem and entering into the activity of research and 
brainstorming, a modeler (or teacher) might not know 
how long the work will take or what mathematics will 
be needed. The multiple valid solutions, dead ends, and 
revisions are not in sync with a popular conception of 
mathematics as a well defined rapid run from a problem  
to its single correct solution that has dominated 
mathematics for decades (Schoenfeld 1988). Different 
sets of assumptions can lead to drastically different—yet 
similarly valid—models and solutions. The differences 
are not merely different strategies for solving problems, 
such as using substitution, elimination, and graphing as 
different strategies for solving a system of linear equations. 
Different solutions and different models arise from 
choosing among related mathematical objects, such as 
different types of functions. The differences can be drastic. 
For example, different assumptions might lead to different 
linear equations, more equations, non-linear equations, 
equalities, or even new or different variables.

The non-predetermined nature of mathematical modeling 
contributes to the messiness of mathematical modeling that 
lies in contrast to the organization of mathematical ideas in 
the school curriculum. Multiple valid solutions, in addition 
to multiple strategies, compete with common expectations 

Mathematical modeling  
is not a procedure or 
algorithm. There is no fixed  
or firm set of steps that take 
one from the beginning  
to the end of a mathematical 
modeling event.

FIGURE 3: Diagram illustrating mathematical modeling as 
a process, adapted from Math Modeling: Getting Started & 
Getting Solutions https://m3challenge.siam.org/resources/
modeling-handbook (Bliss, Fowler, & Galluzzo, 2014, p.6)
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of what many people have long believed good mathematics 
should be: quickly solved problems with single correct 
answers (Schoenfeld, 1988). Mathematical modeling and 
school mathematics curricula also have competing goals in 
that the former is open to whatever mathematics is needed 
while the latter typically has a clearly articulated set of 
topics and expectations.

Despite these competing goals, student engagement  
in mathematical modeling has the potential to help  
students develop an understanding of curricula 
mathematics—the mathematics to be learned in the 
classroom at the students’ current point in the  
curriculum (Zbiek & Conner, 2006).

Teachers and other educators can benefit from more 
productive beliefs about the doing, learning, and  
teaching of mathematical modeling (Zbiek, 2016a) as 
they enact curriculum materials that take a distributed 
atomistic approach to mathematical modeling.

Transitioning to  
Mathematical Modeling Work

Ideally, high school students should engage in big, messy 
mathematical modeling problems, but implementing a 
curriculum that fully embraces mathematical modeling can 
be challenging. Geiger, Ärlebäck, and Frejd (2016) contrast a 
holistic approach with an atomistic approach of mathematical 
modeling in the classroom. With a holistic approach, students 
engage in the complete mathematical modeling process; 
within an atomistic approach, students attend to particular 
aspects of the modeling process at different times. An 
atomistic approach seems productive when available time and 
student familiarity with mathematical modeling are issues.

Teachers may want to consider a distributed atomistic 
approach that involves opportunities to make various 
approaches explicit as they arise (Zbiek, 2016b). In a 
distributed atomistic approach, students engage frequently 
with particular components of the modeling process over 
time, with the goal of helping them become competent 
modelers able to engage in full-fledged mathematical 
modeling work. Incorporating such an approach into high 
school classrooms requires careful consideration of the 
types of problems students are asked to solve and what 
students are expected to do.

A transition from a typical high school mathematics 
experience to one that fully embraces mathematical 
modeling work should start with abandoning commonly 
held expectations for mathematics learning. For example, a 
focus on procedures, a common mainstay of the highschool 
mathematics classroom, is a problem not only in terms of 

the absence of math thinking and reasoning, but also in 
the way in which procedures are often taught using worked 
examples. While such examples can be powerful tools 
for learners (Star et al., 2015), they could also be barriers 
to mathematical modeling work if teachers and students 
anticipate worked examples (Davis, 2009).

One step in building mathematical modelers is explicit 
work analyzing models of others or from others’ attempts 
to provide models. Students may be asked to use a function 
model and evaluate the output for a given input value (see 
example in Figure 4a), to analyze and correct or solve an 
equation or inequality—or system of equations and/or 
inequalities, given an input or output value (see example in 
Figure 4b). Or students may be asked to calculate and measure 
and observe or verify relationships based on prescribed 
geometry figures superimposed on a photo or sketches of a 
real-world object (see example in Figure 4c). These tasks are 
seemingly sufficient in meeting the expectation that students 
“can analyze those relationships mathematically to draw 
conclusions” (NGA Center & CCSSO, 2010, p.7).

FIGURE 4a: Example of tasks for which students work  
with others’ models

FIGURE 4b: Example of tasks for which students work  
with and identify errors in others’ models

FIGURE 4c: Example of tasks for which students work  
with others’ models
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In a distributed atomistic approach, students should 
also be asked to modify or evaluate models given. Davis 
(2009) captures one aspect of the emphasis on real-world 
problems in a way that supports modeler development. 
He distinguishes between Full Domain (FD) graphs of 
functions as those that convey all key features of a function 
and Limited Domain (LD) graphs—graphs of otherwise 
common functions with domains that relate to a realistic 
context. Prospective modelers can be asked about the 
implications when LD graphs are used (see Figure 5). The 
ability to work with LD graphs is necessary to achieve the 
high school modeling goal of students being “able to  
identify important quantities in a practical situation  
and map their relationships using such tools as diagrams, 
two-way tables, graphs, flowcharts, and formulas” (p.7).

Building on the atomistic approach of bringing modeling 
into daily lessons, teachers could provide opportunities for 
students to develop models that take several forms, such as 
representing patterns—or terms of a pattern—with linear 
functions or arithmetic sequences (see Figure 6), using 
particular algebraic forms to determine parameters to 
match particular settings (see Figure 7). All of these tasks 
prescribe the type of model, engage students in making 
few decisions, and often end with “correct” models.

Interestingly, Gould’s (2016) study of a few Common  
Core-aligned textbooks suggest that the modeling 
activities to which students are exposed are mainly analyze 
and interpret tasks—tasks that fit mainly in the Getting  
a Solution part of Bliss, Fowler, and Galluzzo’s diagram  
(see Figure 3). She argues that students need more 
experience determining variables and assumptions; 
they need to identify tasks that target the Research and 
Brainstorm components. The task in Figure 8 is an  

open-ended problem that requires students to attend  
to real-world problems.

FIGURE 5: Example of reflection on Limited Domain  
graph for mode

FIGURE 6: Example of expressing a model based on  
an identified pattern

 Analyze and Persevere

FIGURE 7: Example of expressing a model based on  
an identified pattern

 Apply Math Models

FIGURE 8: Example of expressing a model based on  
an identified pattern
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Students also need validation tasks. The validation  
task in Figure 9 does not ask whether the model is  
the “right” model; rather students consider the  
aptness of the model by looking at how well it might 
fit an altered situation with different parameters  
and variables.

Mathematical modeling as a process includes revisiting 
initial solutions and reiterating components of the cycle. 
The problems that launch lessons offer opportunities  
for students to revisit the problem with altered situations 
or assumptions. These alterations should lead students 
to realize the need for new mathematical tools. Students 
explore finding a location equidistant from three points 
on a map, creating the need for finding the point that is 
equidistant from the vertices of a triangle (see Figure 10). 
The need to organize and then manipulate data related  
to both size and color creates a need for a matrix rather  
than a table (see Figure 11).

The atomistic approach focuses students on discrete 
components of the mathematical modeling process.  
As they develop modeling skills, emerging modelers need 
to orchestrate the elements into one or more mathematical 
modeling cycles. The Mathematical Modeling in 3-Acts tasks 
found in each topic of enVision A| G| A are one way to 
provide this bridge. These tasks are not full-fledged 
modeling activities—they generally have an intended 
solution path and a singular correct answer. Still, these 
tasks do fit the atomistic view in that they allow students 
to put together elements of the modeling process on their 
path to becoming proficient modelers. Judicious use of 
these tasks is consistent with the goal for students to 
“routinely interpret their mathematical results in the 
context of the situation and reflect on whether the results 
make sense, possibly improving the model if it has not 
served its purpose.” (NGA Center & CCSSO, 2010).

Students move into more authentic mathematical 
modeling experiences as they engage in components of 
the mathematical modeling process beyond mathematical 
manipulations and ideas—the Getting a Solution part 
in Figure 3. Important in the success of the atomistic 
approach is the extent to which students orchestrate 
components and make decisions. Routinely infusing 
curricular mathematics problems with modeling 
components singularly and in combination allows 
students to decide such things as which variables to use 
and what assumptions to make, which mathematical 
techniques to use, how the model will be analyzed, and 
what will be reported. 

Also important are the opportunities for students to 
engage in full modeling activities.

FIGURE 9: Example of expressing a model based on an 
identified pattern

FIGURE 10: Lesson Launch that introduces the need for finding 
the point that is equidistant from the vertices of a triangle.

FIGURE 11: Lesson launch that introduce the need for 
matrix as a new mathematical tool



7

Summary

A distributed atomistic approach incorporates  
mathematical modeling into school mathematics in a way 
that not only develops students’ modeling capacity but 
also supports students’ learning of curricular mathematics 
as they focus on components of the modeling process. 
Students can experience modeling moments within daily 
enVision A| G| A lessons with problems that are infused with 
modeling components. This approach makes mathematical 
modeling a familiar mathematical practice and supports 
student learning of high school mathematics content.
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