
Developing the “Full Package”  
of Procedural Fluency
BY DR. JENNIFER M. BAY-WILLIAMS 

A Little Background About a Long Story...
If you have been in mathematics education for a while, you may recall classic 
discussions about number sense, calling it hard to define, easier to recognize 
and describe. In fact, we easily recognize that children who have number 
sense demonstrate this through their general understanding of number and 
operations, along with their ability and inclination to use this understanding 
in flexible ways to make mathematical judgments (McIntosh, Reys, Reys, Bana, 
and Farrell, 1997). We can describe number sense as the ability to decompose 
numbers naturally, to use the relationships among arithmetic operations to 
solve problems, to understand the base ten number system, to estimate, and 
to recognize the relative and absolute magnitude of numbers (NCTM, 2000).

As number sense became a featured part of reform initiatives, we tended 
to focus on developing conceptual understanding, while procedural fluency 
was largely overlooked, or even positioned as a set of skills that should be 
de-emphasized. Yet, developing mathematical proficiency requires a strong 
background in both, and in fact, a strength in one of these two areas can help 
to strengthen the other area. 

To demonstrate, let’s revisit just one of the number sense descriptors: the 
ability to decompose numbers naturally. An example of this in Grades 1 and 
2 is using the Make 10 strategy. A child recognizes that 7 + 4 can be solved by 
decomposing 4 into 3 + 1, then adding the 7 + 3 to “make 10”, and adding the 1 
to equal 11. Visuals such as ten frames and number lines help students to see 
how they can decompose numbers (see Figure 1a and 1b). The number line 
is underutilized in early learning, but is critical to building an understanding 
of the relative size of numbers, and will help students generalize the Make 10 
strategy for basic facts, to a Make 30 strategy for sums such as 28 + 67, and 
other problems that can be efficiently solved using a decomposition strategy.
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Decomposing can also be see in multiplication, as 
students can break numbers apart into tens and ones 
in order to multiply (see Figure 2). Thus decomposing, 
which requires conceptual understanding, is critical to 
procedural fluency. 

THE FULL PACKAGE OF FLUENCY

Procedural fluency, like number sense, is best understood 
by describing what students who have it can do. Such 
students have “skill in carrying out procedures flexibly, 
accurately, efficiently, and appropriately” (Kilpatrick, 
Swafford, and Findell 2001). Think of a topic in the K–5 
curricula, such as adding within 1,000. With this topic 
in mind, ask yourself what it means for a student to 
be able to fluently add within 1,000. For too long and 
for too many, this has meant applying an algorithm 
correctly. Yet, this addresses only one of the four 
elements of procedural fluency. Not convinced? Let’s 
look at an example:

                          299 + 436 = 

Suppose student stacks these up, adds from the ones 
place to the hundreds place, regrouping all the way, 
and gets the correct answer. How would you rate that 
student on the four components of fluency?

Accurate:      Yes   No

Efficient:      Yes   No

Appropriate strategy selection:   Yes    No

Flexible:       Yes    No

The only certain Yes answer is “accurate.” Applying 
the U.S. standard algorithm here is not especially 
efficient. Decomposing 436 into 1 + 435 and rethinking 
the sum as 300 + 435, for example, would be a more-
efficient strategy. Therefore, the strategy selected 
was not appropriate, because all that regrouping was 
not necessary and was considerably slower. By not 
considering possible options for strategies, the student 
likely is not thinking flexibly about the operations  
(aha, number sense!). 

Procedural skill has traditionally referred to accurate, 
smooth, rapid execution of mathematical procedures 
without regard to comprehension, flexibility, or strategy 
selection (Hiebert and Grouws 2007; Star 2005). Yet, 
recent state standards clearly intend to focus on the full 
package of fluency as something more than mastering 
the standard algorithm. The standards speak to the 
components of fluency across the grades, as this 
sampling of the standards indicates (bold added):

Add and subtract within 20. Add and subtract within 
20, demonstrating fluency for addition and subtraction 
within 10. Use strategies such as counting on;  
making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14);  
decomposing a number leading to a ten  

Source: enVision® Mathematics ©2020, Grade 3, Topic 3, p. 94 (Charles 
et al., 2020).

Figure 2. An area model illustrates how one factor in 8 × 25 
can be decomposed as an effective way to multiply.

Figure 1. Ten frames and number lines help students learn 
and remember the Make 10 strategy.

1a. Ten frames and counters help students envision how to 
“make 10”

Source: enVision® Mathematics ©2020, Grade 1, Topic 3, p. 126 (Charles 
et al., 2020).

Source: enVision® Mathematics ©2020, Grade 1, Topic 3, p. 130 (Charles 
et al., 2020).

1b. Number lines help students envision Make 10 and 
extend to other adding and subtracting strategies. 
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(e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using the 
relationship between addition and subtraction  
(e.g., knowing that 8 + 4 = 12, one knows 12 – 8 = 4);  
and creating equivalent but easier or known sums  
(e.g., adding 6 + 7 by creating the known equivalent  
6 + 6 + 1 = 12 + 1 = 13). 

Use place value understanding and properties of 
operations to add and subtract. Fluently add and 
subtract within 100 using strategies based on place 
value, properties of operations, and/or the relationship 
between addition and subtraction.

Understand properties of multiplication and the 
relationship between multiplication and division. 
Apply properties of operations as strategies to multiply 
and divide.

Multiply and divide within 100. Fluently multiply 
and divide within 100, using strategies such as the 
relationship between multiplication and division.

Use place value understanding and properties 
of operations to perform multi-digit arithmetic. 
Multiply a whole number of up to four digits by a 
one-digit whole number, and multiply two two-digit 
numbers, using strategies based on place value and the 
properties of operations.

Perform operations with multi-digit whole numbers 
and with decimals to hundredths. Add, subtract, 
multiply, and divide decimals to hundredths, using 
concrete models or drawings and strategies based 
on place value, properties of operations, and/or the 
relationship between addition and subtraction; relate 
the strategy to a written method and explain the 
reasoning used.

Strategies, referenced repeatedly in the standards, 
are different from algorithms (Fuson and Beckmann 
2012–2013). Strategies are “purposeful manipulations 
that may be chosen for specific problems, may not 
have a fixed order, and may be aimed at converting one 
problem into another” while algorithms are a “set of 
predefined steps for a class of problems” (NGA Center 
and CCSSO 2010, p. 85). 

Based on a review of research on fluency, Bay-Williams 
and Stokes-Levine (2017) propose the flow chart 
in Figure 3 as a way to illustrate the full package of 
procedural fluency. This figure helps to illustrate the 
difference between superficial procedural knowledge, 
which may only include knowing one procedure with 
speed and accuracy, and deep procedural knowledge, 

which includes knowing strategies and algorithms, and 
knowing when to use them or adapt them. This deeper 
knowledge requires conceptual understanding.

DEVELOPING FLUENCY IS A MARATHON, 
NOT A DASH

Developing procedural fluency (including connecting 
procedures to concepts) is a marathon. It requires use 
of visual representations and situations that enhance 
students’ abilities to learn specific efficient strategies, 
and then learn to select the strategy that best fits 
a situation. Additionally, standard algorithms take 
time to develop. That time commitment, as well as 
misunderstood beliefs about the standard algorithms, 
can result in students abandoning their other strategies 
and using only the standard algorithm. Students do not 
“graduate” to the standard algorithm, never again to use 
the other strategies and algorithms they learned; rather 
the standard algorithm is added to a students’ repertoire 
of strategies. Read this sentence again. Without 
this approach, students will not develop fluency, as 
described in Figure 3. When encountering a problem 
such as 299 + 349, the fluent child thinks, “Which strategy 
should I use (from my repertoire) given the numbers in 
the problem?” Going back to the four components of 
procedural fluency, this child has the potential for 
scoring a Yes in all four categories. 

Developing procedural fluency is complex and takes 
time. It requires (1) knowing and understanding a variety 
of strategies and algorithms (fluency), (2) being able to 

Procedural

Correct  
Solution

Speed Strategy 
Adaptation

Appropriate 
strategy or 
algorithm 
Selection

Strategy 
transference 
for different 

problems

Goal for students:

They can compute...

Which includes...

Accurately Efficiently Flexibly

Source: Bay-Williams, J. M., & Stokes Levine, A. (2017). The Role of Concepts 
and Procedures in Developing Fluency. In D. Spangler & J. Wanko (Eds.) 
Enhancing Professional Practice with Research Behind Principles to 
Actions. Reston, VA: NCTM.

Figure 3. Components of procedural fluency and their  
inter-relationships.
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judge one’s repertoire to determine which strategy best 
fits the problem given (efficiency), and (3) being able to 
adapt a selected strategy to fit a problem (flexibility). 
These cognitive processes take time to develop 
(Baroody and Dowker 2003; LeFevre et al. 2006; Osana 
and Pitsolantis 2013; Schneider et al. 2011). Here we 
share five pragmatic, research-based suggestions for 
developing procedural fluency.

1. FOCUS ON WHY STRATEGIES OR 
ALGORITHMS WORK 

The classic Bloom’s (revised) taxonomy describes 
a hierarchy of thinking, from answering low-level 
knowledge questions to engaging in increasingly more 
complex levels of thinking (see Figure 4) (Fan & Bokhove, 
2014). The simple act of asking “Why does that strategy 
work?” moves the focus of a mathematics lesson from 
knowledge (Level 1) to understanding (Level 2), from 
low-level to high-level. This is what standards mean 
when they include the phrasing “using properties” and 
“using place value”: these truths about numbers provide 
the rationales for why particular strategies work. While 
students may not be able to name the properties of 
operations, they learn to use them to be flexible in how 
they solve problems.

One way to help students see why a strategy works is by 
having students generate how they will apply a strategies 
and describe or illustrate their reasoning. The Convince 
Me! example in Figure 5, for example, provides an 
example of having students draw a picture (along with 
two possible ways counters might be used by a student). 

When students understand how and why they might 
break-apart a factor, they can then apply that idea 
to other numbers, including larger whole numbers, 
fractions, decimals, and so on. 

2. FOCUS ON WHEN STRATEGIES OR 
ALGORITHMS WORK

Once students have learned strategies, and even while 
they are learning them, they must have significant 
opportunities to decide when to use them. For example, 
consider this example:

605 – 498 = 

A student has several options. One student solves this 
by using a counting up strategy on an open number line:

After having the student explain why they selected this 
strategy, the question to pose to this student, and to 
other students, is:

When is this a good strategy to use? 

When is this strategy not going to work very well?

Source: enVision® Mathematics ©2020, Grade 3, Topic 3, p. 78 (Charles 
et al., 2020).

Figure 5. Using break-apart (distributive property) as a 
strategy to learn basic multiplication facts.

Level of Thought 
(Fan of Bokhove, 

2014)
Bloom’s Level Fluency with  

Algorithms

Level 3:  
Evaluation and 
Construction

Create Evaluate

•  Comparing different 
algorithms

•  Judging efficiency of an 
algorithm

•  Constructing new  
algorithms (strategies)

•  Generalizing

Level 2:  
Understanding 

and  
Comprehension

Analyze  
Apply  

Understand

•  Describing why a  
procedure works

•  Applying procedure in 
a complex situation

Level 1:  
Knowledge and 

Skills
Remember

•  Telling the steps of a 
procedure

•  Carrying out steps 
in a straightforward 
situation

Higher-level Thinking Develops  
Procedural Fluency

Source: Based on Fan, L. and Bokhove, C. (2014). Rethinking the Role of 
Algorithms in School Mathematics: A Conceptual Model with Focus on 
Cognitive Development.” ZDM International Journals of Mathematics  
Education, 46(3), 481–492.

Figure 4. Bloom’s (Revised) taxonomy as applied to  
procedural fluency with algorithms.

498 500

605 – 498 = 107 

600 605

+2 +5+100
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These when questions are necessary to help students 
generalize the strategy. Generalization is critical to 
both strategy selection and flexibility – two of the four 
components of fluency. Making good choices about 
strategies leads to making an efficient choice, and likely 
increases the chance of an accurate answer. In other 
words, when questions can support the full fluency 
package.

3. USE WORKED EXAMPLES

Worked examples (already solved problems) provide 
an opportunity to discuss both why a strategy works 
and when a strategy makes sense. Research has 
found that using worked examples is an effective 
instructional strategy to help students understand and 
solve problems (Renkl, 2014; Star & Verschaffel 2016). 
Worked examples provide an opportunity for students 
to verbalize their thinking through talking, writing, 
or drawing to describe the steps used to solve the 
problem, practices found to have a significant positive 
impact on students with difficulties in mathematics 
(Gersten and Clarke 2007). Worked examples also help 
students notice their own misconceptions, especially 
when tasks include self-explanation prompts (McGinn, 
Lange, & Booth 2015). Worked examples can showcase 
correct solutions (perhaps to highlight an interesting 
strategy), partially worked examples (perhaps to explore 
a different approach), or an incorrect strategy (perhaps 
to bring attention to a common error) (Van de Walle, 
Karp, & Bay-Williams, 2019). For example, in Figure 6, 
students are asked to consider if Bill’s solution is correct. 
Bill’s solution highlights an important concept of fraction 
addition: the addition of the parts (in this case twelfths).

4. COMPARE PROCEDURES
Research on improving student achievement 
suggests that mathematics flexibility and conceptual 
understanding can be increased when students are 
asked to make comparisons (Fuson 2005; Rittle-Johnson 
and Star 2009; Rittle-Johnson, Star, and Durkin 2009, 
2012; Star et al. 2015). Comparison tasks are cognitively 
higher level, or Level 3 in Bloom’s (revised) taxonomy 
(Figure 4). A comparison task might ask students 
to compare problem types, or it might ask them to 
compare problem solution methods (Rittle-Johnson, 
Star, and Durkin 2009; Star et al. 2015). Practice sets 
can be strategically designed to have students look for 
patterns and make generalizations through comparing 
(Blanton 2008). Through such comparisons, students 
gain conceptual insights into the algorithms they are 
using and strengthen their number sense. To support 
the informal strategies discussed above, a set of 
multiplication problems might be created (see Figure 7). 

1. 9 × 13= 

2. 10 × 13= 

3. 10 × 17= 

4. 12 × 17= 

5. 11 × 42= 

6. 10 × 42=

7. 8 × 42=

8. Explain how #1 compares to #2.

9. Explain how #3 could help you solve #4.

10.  Describe a general strategy you can use when 
multiplying a number by 9.

Figure 7. A problem set that lends to connecting procedures 
and concepts.

Sharing multiple solution strategies commonly takes 
place as you discuss solutions to a Solve & Share in 
enVision® Mathematics (Charles et al., 2020), or at the 
end of lesson when discussing a selected problem. 
Importantly, this sharing should not be simply a 
show-and-tell, which often produces little higher-level 
thinking. The showcasing of strategies sets up the 
opportunity for strategy comparison, but the teacher 
must pose questions that focus students’ attention on 
similarities and differences across solutions in order for 
students to reason at high levels about the strategies 
(NCTM, 2014). 

Source: enVision® Mathematics ©2020, Grade 4, Topic 7, p. 294 (Charles 
et al., 2020).

Figure 6. Worked examples help students explore when and 
why a strategy might (or might not) work.
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5. MAKE CONNECTIONS EXPLICIT 
The value of making connections explicit is one of 
the strongest findings in the research on classroom 
practices that support conceptual understanding and 
procedural fluency (Baker et al. 2014; Fuson 2005; 
Hiebert and Grouws 2007; Osana and Pitsolantis 2013). 
Making connections requires higher-level thinking, 
involving comprehension and even generalization 
(Levels 2 and 3 in Blooms [revised] taxonomy). 

What are some ways to make these connections? 
First, using familiar and interesting situations provides 
relevance and prompts students to gauge whether a 
solution is reasonable (Osana and Pitsolantis 2013). 
Interesting, relevant situations can convert a rote 
exercise (Level 1) into an understanding or generalizing 
cognitive activity. Second, physical models illustrate the 
meaning behind mathematical symbols and operations 
(NCTM 2014; Osana and Pitsolantis 2013). It isn’t enough 
to show illustrations one day, and symbols the next; 
students need opportunities to make connections 
between concrete visuals and the related symbols. 
Figure 8 illustrates how fraction strips are used to help 
students understand how to compare same numerator 
fractions, and then connect to the related symbolic 
representations.

Attention to symbols, physical models, and the problem 
situations builds connections between concepts and 
procedures. Understanding these connections helps 
students know when and how to use strategies, and 
thereby leads to flexibility in solving problems.

Summary
The NCTM recommended Teaching Practice, Build 
procedural fluency from conceptual understanding, 
encompasses both procedures and concepts. 
Importantly, the student outcome for procedural 
fluency and conceptual understanding is higher-level 
cognition. The five research-based strategies described 
above must be integrated into daily mathematics 
teaching. The result will be the full package of fluency. 
A student having this full package is not just better 
prepared for some high-stakes assessment, but for all 
the mathematics that is to follow in later grades, and 
more importantly, for handling the mathematics of  
daily living.

Source: enVision® Mathematics ©2020, Grade 3, Topic 13, p. 498 
(Charles et al., 2020).

Figure 8. Students need regular opportunities to  
connect concrete representations to abstract symbolic 
representations.
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